Calculation of penalties in algorithm of mixed integer programming solving with revised dual simplex method for bounded variables
Wei, YM; Hu, QH
发表期刊JOURNAL OF COMPUTATIONAL MATHEMATICS
关键词Penalties Stronger Penalties The Revised Dual Simplex Method For Bounded Variables
摘要The branch-and-bound method with the revised dual simplex for bounded variables is very effective in solving relatively large-size integer linear programming problems. This paper, based on the general forms of the penalties by Beale and Small and the stronger penalties by Tomlin, describes the modifications of these penalties used for the method of bounded variables. The same examples from Petersen are taken and the satisfactory results are shown in comparison with those obtained by Tomlin.
1999
卷号17期号:5页码:8,545-552
ISSN0254-9409
学科领域Mathematics, Applied ; Mathematics
收录类别SCI
语种英语
WOS记录号WOS:000082771300009
引用统计
文献类型期刊论文
条目标识符http://ir.casisd.cn/handle/190111/5379
专题中国科学院科技政策与管理科学研究所(1985年6月-2015年12月)
推荐引用方式
GB/T 7714
Wei, YM,Hu, QH. Calculation of penalties in algorithm of mixed integer programming solving with revised dual simplex method for bounded variables[J]. JOURNAL OF COMPUTATIONAL MATHEMATICS,1999,17(5):8,545-552.
APA Wei, YM,&Hu, QH.(1999).Calculation of penalties in algorithm of mixed integer programming solving with revised dual simplex method for bounded variables.JOURNAL OF COMPUTATIONAL MATHEMATICS,17(5),8,545-552.
MLA Wei, YM,et al."Calculation of penalties in algorithm of mixed integer programming solving with revised dual simplex method for bounded variables".JOURNAL OF COMPUTATIONAL MATHEMATICS 17.5(1999):8,545-552.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Calculation of penal(336KB) 开放获取--浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wei, YM]的文章
[Hu, QH]的文章
百度学术
百度学术中相似的文章
[Wei, YM]的文章
[Hu, QH]的文章
必应学术
必应学术中相似的文章
[Wei, YM]的文章
[Hu, QH]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Calculation of penalties in algorithm of mixed integer programming solving with revised dual simplex method for bounded variables.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。